西部数码主机 | 阿里云主机| 虚拟主机 | 服务器 | 返回乐道官网

Android中RelativeLayout和LinearLayout性能分析

时间:2016-02-05 19:40来源:未知 作者:好模板 点击:
先看一些现象吧:用eclipse或者Android studio,新建一个Activity自动生成的布局文件都是RelativeLayout,或许你会认为这是IDE的默认设置问题,其实不然,这是由 android-sdk\tools\templates\activitie

先看一些现象吧:用eclipse或者Android studio,新建一个Activity自动生成的布局文件都是RelativeLayout,或许你会认为这是IDE的默认设置问题,其实不然,这是由 android-sdk\tools\templates\activities\BlankActivity\root\res\layout\activity_simple.xml.ftl 这个文件事先就定好了的,也就是说这是Google的选择,而非IDE的选择。那SDK为什么会默认给开发者新建一个默认的RelativeLayout布局呢?当然是因为RelativeLayout的性能更优,性能至上嘛。但是我们再看看默认新建的这个RelativeLayout的父容器,也就是当前窗口的顶级View——DecorView,它却是个垂直方向的LinearLayout,上面是标题栏,下面是内容栏。那么问题来了,Google为什么给开发者默认新建了个RelativeLayout,而自己却偷偷用了个LinearLayout,到底谁的性能更高,开发者该怎么选择呢?

View的一些基本工作原理

先通过几个问题,简单的了解写android中View的工作原理吧。

View是什么?

简单来说,View是Android系统在屏幕上的视觉呈现,也就是说你在手机屏幕上看到的东西都是View。

View是怎么绘制出来的?

View的绘制流程是从ViewRoot的performTraversals()方法开始,依次经过measure(),layout()和draw()三个过程才最终将一个View绘制出来。

View是怎么呈现在界面上的?

Android中的视图都是通过Window来呈现的,不管Activity、Dialog还是Toast它们都有一个Window,然后通过WindowManager来管理View。Window和顶级View——DecorView的通信是依赖ViewRoot完成的。

View和ViewGroup什么区别?

不管简单的Button和TextView还是复杂的RelativeLayout和ListView,他们的共同基类都是View。所以说,View是一种界面层控件的抽象,他代表了一个控件。那ViewGroup是什么东西,它可以被翻译成控件组,即一组View。ViewGroup也是继承View,这就意味着View本身可以是单个控件,也可以是多个控件组成的控件组。根据这个理论,Button显然是个View,而RelativeLayout不但是一个View还可以是一个ViewGroup,而ViewGroup内部是可以有子View的,这个子View同样也可能是ViewGroup,以此类推。

RelativeLayout和LinearLayout性能PK

基于以上原理和大背景,我们要探讨的性能问题,说的简单明了一点就是:当RelativeLayout和LinearLayout分别作为ViewGroup,表达相同布局时绘制在屏幕上时谁更快一点。上面已经简单说了View的绘制,从ViewRoot的performTraversals()方法开始依次调用perfromMeasure、performLayout和performDraw这三个方法。这三个方法分别完成顶级View的measure、layout和draw三大流程,其中perfromMeasure会调用measure,measure又会调用onMeasure,在onMeasure方法中则会对所有子元素进行measure,这个时候measure流程就从父容器传递到子元素中了,这样就完成了一次measure过程,接着子元素会重复父容器的measure,如此反复就完成了整个View树的遍历。同理,performLayout和performDraw也分别完成perfromMeasure类似的流程。通过这三大流程,分别遍历整棵View树,就实现了Measure,Layout,Draw这一过程,View就绘制出来了。那么我们就分别来追踪下RelativeLayout和LinearLayout这三大流程的执行耗时。
如下图,我们分别用两用种方式简单的实现布局测试下


31713556B8907738423903D70A5031AA.jpg
LinearLayout

Measure:0.738ms
Layout:0.176ms
draw:7.655ms

RelativeLayout

Measure:2.280ms
Layout:0.153ms
draw:7.696ms
从这个数据来看无论使用RelativeLayout还是LinearLayout,layout和draw的过程两者相差无几,考虑到误差的问题,几乎可以认为两者不分伯仲,关键是Measure的过程RelativeLayout却比LinearLayout慢了一大截。

Measure都干什么了

RelativeLayout的onMeasure()方法
View[] views = mSortedHorizontalChildren;
    int count = views.length;

    for (int i = 0; i < count; i++) {
      View child = views[i];
      if (child.getVisibility() != GONE) {
        LayoutParams params = (LayoutParams) child.getLayoutParams();
        int[] rules = params.getRules(layoutDirection);

        applyHorizontalSizeRules(params, myWidth, rules);
        measureChildHorizontal(child, params, myWidth, myHeight);

        if (positionChildHorizontal(child, params, myWidth, isWrapContentWidth)) {
          offsetHorizontalAxis = true;
        }
      }
    }

    views = mSortedVerticalChildren;
    count = views.length;
    final int targetSdkVersion = getContext().getApplicationInfo().targetSdkVersion;

    for (int i = 0; i < count; i++) {
      View child = views[i];
      if (child.getVisibility() != GONE) {
        LayoutParams params = (LayoutParams) child.getLayoutParams();

        applyVerticalSizeRules(params, myHeight);
        measureChild(child, params, myWidth, myHeight);
        if (positionChildVertical(child, params, myHeight, isWrapContentHeight)) {
          offsetVerticalAxis = true;
        }

        if (isWrapContentWidth) {
          if (isLayoutRtl()) {
            if (targetSdkVersion < Build.VERSION_CODES.KITKAT) {
              width = Math.max(width, myWidth - params.mLeft);
            } else {
              width = Math.max(width, myWidth - params.mLeft - params.leftMargin);
            }
          } else {
            if (targetSdkVersion < Build.VERSION_CODES.KITKAT) {
              width = Math.max(width, params.mRight);
            } else {
              width = Math.max(width, params.mRight + params.rightMargin);
            }
          }
        }

        if (isWrapContentHeight) {
          if (targetSdkVersion < Build.VERSION_CODES.KITKAT) {
            height = Math.max(height, params.mBottom);
          } else {
            height = Math.max(height, params.mBottom + params.bottomMargin);
          }
        }

        if (child != ignore || verticalGravity) {
          left = Math.min(left, params.mLeft - params.leftMargin);
          top = Math.min(top, params.mTop - params.topMargin);
        }

        if (child != ignore || horizontalGravity) {
          right = Math.max(right, params.mRight + params.rightMargin);
          bottom = Math.max(bottom, params.mBottom + params.bottomMargin);
        }
      }
    }

根据源码我们发现RelativeLayout会对子View做两次measure。这是为什么呢?首先RelativeLayout中子View的排列方式是基于彼此的依赖关系,而这个依赖关系可能和布局中View的顺序并不相同,在确定每个子View的位置的时候,就需要先给所有的子View排序一下。又因为RelativeLayout允许A,B 2个子View,横向上B依赖A,纵向上A依赖B。所以需要横向纵向分别进行一次排序测量。

LinearLayout的onMeasure()方法
  @Override
  protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
    if (mOrientation == VERTICAL) {
      measureVertical(widthMeasureSpec, heightMeasureSpec);
    } else {
      measureHorizontal(widthMeasureSpec, heightMeasureSpec);
    }
  }

与RelativeLayout相比LinearLayout的measure就简单明了的多了,先判断线性规则,然后执行对应方向上的测量。随便看一个吧。

for (int i = 0; i < count; ++i) {
      final View child = getVirtualChildAt(i);

      if (child == null) {
        mTotalLength += measureNullChild(i);
        continue;
      }

      if (child.getVisibility() == View.GONE) {
       i += getChildrenSkipCount(child, i);
       continue;
      }

      if (hasDividerBeforeChildAt(i)) {
        mTotalLength += mDividerHeight;
      }

      LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams();

      totalWeight += lp.weight;

      if (heightMode == MeasureSpec.EXACTLY && lp.height == 0 && lp.weight > 0) {
        // Optimization: don't bother measuring children who are going to use
        // leftover space. These views will get measured again down below if
        // there is any leftover space.
        final int totalLength = mTotalLength;
        mTotalLength = Math.max(totalLength, totalLength + lp.topMargin + lp.bottomMargin);
      } else {
        int oldHeight = Integer.MIN_VALUE;

        if (lp.height == 0 && lp.weight > 0) {
          // heightMode is either UNSPECIFIED or AT_MOST, and this
          // child wanted to stretch to fill available space.
          // Translate that to WRAP_CONTENT so that it does not end up
          // with a height of 0
          oldHeight = 0;
          lp.height = LayoutParams.WRAP_CONTENT;
        }

        // Determine how big this child would like to be. If this or
        // previous children have given a weight, then we allow it to
        // use all available space (and we will shrink things later
        // if needed).
        measureChildBeforeLayout(
           child, i, widthMeasureSpec, 0, heightMeasureSpec,
           totalWeight == 0 ? mTotalLength : 0);

        if (oldHeight != Integer.MIN_VALUE) {
         lp.height = oldHeight;
        }

        final int childHeight = child.getMeasuredHeight();
        final int totalLength = mTotalLength;
        mTotalLength = Math.max(totalLength, totalLength + childHeight + lp.topMargin +
           lp.bottomMargin + getNextLocationOffset(child));

        if (useLargestChild) {
          largestChildHeight = Math.max(childHeight, largestChildHeight);
        }
      }

父视图在对子视图进行measure操作的过程中,使用变量mTotalLength保存已经measure过的child所占用的高度,该变量刚开始时是0。在for循环中调用measureChildBeforeLayout()对每一个child进行测量,该函数实际上仅仅是调用了measureChildWithMargins(),在调用该方法时,使用了两个参数。其中一个是heightMeasureSpec,该参数为LinearLayout本身的measureSpec;另一个参数就是mTotalLength,代表该LinearLayout已经被其子视图所占用的高度。 每次for循环对child测量完毕后,调用child.getMeasuredHeight()获取该子视图最终的高度,并将这个高度添加到mTotalLength中。在本步骤中,暂时避开了lp.weight>0的子视图,即暂时先不测量这些子视图,因为后面将把父视图剩余的高度按照weight值的大小平均分配给相应的子视图。源码中使用了一个局部变量totalWeight累计所有子视图的weight值。处理lp.weight>0的情况需要注意,如果变量heightMode是EXACTLY,那么,当其他子视图占满父视图的高度后,weight>0的子视图可能分配不到布局空间,从而不被显示,只有当heightMode是AT_MOST或者UNSPECIFIED时,weight>0的视图才能优先获得布局高度。最后我们的结论是:如果不使用weight属性,LinearLayout会在当前方向上进行一次measure的过程,如果使用weight属性,LinearLayout会避开设置过weight属性的view做第一次measure,完了再对设置过weight属性的view做第二次measure。由此可见,weight属性对性能是有影响的,而且本身有大坑,请注意避让。

小结

从源码中我们似乎能看出,我们先前的测试结果中RelativeLayout不如LinearLayout快的根本原因是RelativeLayout需要对其子View进行两次measure过程。而LinearLayout则只需一次measure过程,所以显然会快于RelativeLayout,但是如果LinearLayout中有weight属性,则也需要进行两次measure,但即便如此,应该仍然会比RelativeLayout的情况好一点。

RelativeLayout另一个性能问题

对比到这里就结束了嘛?显然没有!我们再看看View的Measure()方法都干了些什么?

public final void measure(int widthMeasureSpec, int heightMeasureSpec) {

    if ((mPrivateFlags & PFLAG_FORCE_LAYOUT) == PFLAG_FORCE_LAYOUT ||
        widthMeasureSpec != mOldWidthMeasureSpec ||
        heightMeasureSpec != mOldHeightMeasureSpec) {
                     ......
      }
       mOldWidthMeasureSpec = widthMeasureSpec;
    mOldHeightMeasureSpec = heightMeasureSpec;

    mMeasureCache.put(key, ((long) mMeasuredWidth) << 32 |
        (long) mMeasuredHeight & 0xffffffffL); // suppress sign extension
  }

View的measure方法里对绘制过程做了一个优化,如果我们或者我们的子View没有要求强制刷新,而父View给子View的传入值也没有变化(也就是说子View的位置没变化),就不会做无谓的measure。但是上面已经说了RelativeLayout要做两次measure,而在做横向的测量时,纵向的测量结果尚未完成,只好暂时使用myHeight传入子View系统,假如子View的Height不等于(设置了margin)myHeight的高度,那么measure中上面代码所做得优化将不起作用,这一过程将进一步影响RelativeLayout的绘制性能。而LinearLayout则无这方面的担忧。解决这个问题也很好办,如果可以,尽量使用padding代替margin。

结论

1.RelativeLayout会让子View调用2次onMeasure,LinearLayout 在有weight时,也会调用子View2次onMeasure
2.RelativeLayout的子View如果高度和RelativeLayout不同,则会引发效率问题,当子View很复杂时,这个问题会更加严重。如果可以,尽量使用padding代替margin。
3.在不影响层级深度的情况下,使用LinearLayout和FrameLayout而不是RelativeLayout。
最后再思考一下文章开头那个矛盾的问题,为什么Google给开发者默认新建了个RelativeLayout,而自己却在DecorView中用了个LinearLayout。因为DecorView的层级深度是已知而且固定的,上面一个标题栏,下面一个内容栏。采用RelativeLayout并不会降低层级深度,所以此时在根节点上用LinearLayout是效率最高的。而之所以给开发者默认新建了个RelativeLayout是希望开发者能采用尽量少的View层级来表达布局以实现性能最优,因为复杂的View嵌套对性能的影响会更大一些。

(责任编辑:好模板)
顶一下
(1)
100%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
热点内容