数据库优化器需要具备逻辑推理能力,而且越强越好,为什么呢? 举一些例子, 通过已知的一个人讲的是真话,推理另一个人讲的是不是真话。 例子1: 假设预先提供了 a > 10 是真话 可以推理出 a < 1 一定是假话 例子2: 假设预先提供了 a > 10 是真话 无法推理出 a < 100 一定是真话或假话 例子3: 假设预先提供了 a 是空 是真话 可以推理出 a 不是空 一定是假话 例子4: 假设预先提供了 a <>100 是真话 可以推理出 a =100 一定是假话 例子5: 假设预先提供了 a >100 是真话 可以推理出 a >1 一定是真话 例子6: 假设预先提供了 a 的坐标位置在中国 是真话 可以推理出 a 的坐标位置在浙江杭州 一定是真话 例子7: 假设预先提供了 平面中 坐标A和坐标(1,100)的距离小于100 是真话 是否推理出 坐标A和坐标(100,100)的距离小于1000 一定是真话或假话? 总结一下以上逻辑推理,首先要提供已知真假的一个表达式,然后推理另一个表达式的真假。推理可以得出的结论是真、或者假、或者不知道真假。 对于推理出来的结果一定是真或者一定是假的情况,数据库可以利用它来减少后期的处理。 这体现在优化器生成查询树之前。例如: create table tab(id int check (id >=0), info text, crt_time timestamp); select * from tab where id<0; 以上已知为真的表达式是id>=0,通过这个表达式能推理出SQL中给出的表达式 id<0 一定是假。那么优化器在执行这条SQL时,可以省去扫描表然后再过滤id<0的行,而是构造结构,并直接返回0条记录。我们看看执行计划: digoal=# create table ta(id int check (id >=0), info text, crt_time timestamp); CREATE TABLE digoal=# explain select * from ta where id=-1; QUERY PLAN ---------------------------------------------------- Seq Scan on ta (cost=0.00..24.12 rows=6 width=44) Filter: (id = '-1'::integer) (2 rows) 以上查询貌似并没有优化,还是扫描了表,原因是constraint_exclusion参数默认值对UNION ALL和分区表开启这种逻辑推理检查。将constraint_exclusion 改为ON即可对所有表进行逻辑推理检查。 digoal=# set constraint_exclusion =on; SET digoal=# explain select * from ta where id=-1; -- 现在不需要扫描表了 QUERY PLAN ------------------------------------------ Result (cost=0.00..0.01 rows=1 width=0) One-Time Filter: false (2 rows) digoal=# explain select * from ta where id<-1; -- 现在不需要扫描表了 QUERY PLAN ------------------------------------------ Result (cost=0.00..0.01 rows=1 width=0) One-Time Filter: false (2 rows) 对于无法推理出一定为假的条件,还是需要扫描表的,例如 id<>0。 postgres=# explain select * from ta where id<>0; QUERY PLAN ------------------------------------------------------- Seq Scan on ta (cost=0.00..24.12 rows=1124 width=44) Filter: (id <> 0) (2 rows) 对于提供的表达式与已知的表达式操作符左侧不一致的,目前PG的优化器没有做到这么智能,例如 id+1<10,id+1<0,优化器不会对这种表达式进行逻辑推理,后面我会在代码中分析这块。 postgres=# explain select * from ta where id+1<10; QUERY PLAN ------------------------------------------------------ Seq Scan on ta (cost=0.00..26.95 rows=377 width=44) Filter: ((id + 1) < 10) (2 rows) postgres=# explain select * from ta where id+1<0; QUERY PLAN ------------------------------------------------------ Seq Scan on ta (cost=0.00..26.95 rows=377 width=44) Filter: ((id + 1) < 0) (2 rows) id+1<0 是可以转换为 id< 0-1的 ,对于以下表达式,PG进行了推理,原因是-操作符是一个immutable操作符,0-1可以转为常数-1从而可以进行推理。 postgres=# explain select * from ta where id<0-1; QUERY PLAN ------------------------------------------ Result (cost=0.00..0.01 rows=1 width=0) One-Time Filter: false (2 rows) 目前PostgreSQL数据库支持哪些逻辑推理呢? .1. 约束中包含的表达式的操作符必须是B-tree-indexable operators(或者is null, or , is not null),也就是可以被btree索引用于检索操作符,例如<,<=,=,>,>=以及<> (<>不能直接被索引使用,但是可以转换为< OR >来使用索引)。 B-tree-indexable operators .2. SQL语句where字句中提供的表达式,同样操作符必须是B-tree-indexable operators。 .3. SQL语句where字句中提供的表达式,操作符左侧的操作数必须与约束中的操作数完全一致。 例如约束为(check mod(id,4) = 0),SQL where字句提供的表达式则必须为 mod(id,4) op? ? 这种形式才会进行推理。 又如约束为(check id*100 > 1000),SQL where字句提供的表达式则必须为 id*100 op? ? 这种形式才会进行推理。 又如约束为(check id+10 between 1000 and 10000),SQL where字句提供的表达式则必须为 id+10 op? ? 这种形式才会进行推理。( PostgreSQL 的 between and 会转换为>= and <=,属于B-tree-indexable operators ) 又如约束为(check id between 1000 and 10000),SQL where字句提供的表达式则必须为 id op? ? 这种形式才会进行推理。 例子:约束为is [not] null类型 postgres=# create table tt1(id int check (id is null)); CREATE TABLE postgres=# explain select * from tt1 where id=1; QUERY PLAN ------------------------------------------ Result (cost=0.00..0.01 rows=1 width=0) One-Time Filter: false (2 rows) postgres=# explain select * from tt1 where id is null; QUERY PLAN ----------------------------------------------------- Seq Scan on tt1 (cost=0.00..35.50 rows=13 width=4) Filter: (id IS NULL) (2 rows) postgres=# explain select * from tt1 where id is not null; QUERY PLAN ------------------------------------------ Result (cost=0.00..0.01 rows=1 width=0) One-Time Filter: false (2 rows) 约束为 mod(id,4) = 0,=为B-tree-indexable operators postgres=# create table tt2( id int check(mod(id,4) = 0)); CREATE TABLE postgres=# explain select * from tt2 where id=1; QUERY PLAN ----------------------------------------------------- Seq Scan on tt2 (cost=0.00..41.88 rows=13 width=4) Filter: (id = 1) (2 rows) -- 要让PG进行逻辑推理,WHERE中必须包含mod(id,4)表达式,并且由于mod是immutable函数,mod(1,4)可以转换为常数,因此以下SQL相当于 explain select * from tt2 where mod(id,4)=1 and id=1; 这样才可以被逻辑推理。 postgres=# explain select * from tt2 where mod(id,4)=mod(1,4) and id=1; QUERY PLAN ------------------------------------------ Result (cost=0.00..0.01 rows=1 width=0) One-Time Filter: false (2 rows) 约束为 id*100 > 1000,>为B-tree-indexable operators postgres=# create table tt3( id int check(id*100 > 1000)); CREATE TABLE postgres=# explain select * from tt3 where id=1; QUERY PLAN ----------------------------------------------------- Seq Scan on tt3 (cost=0.00..41.88 rows=13 width=4) Filter: (id = 1) (2 rows) -- 要让PG进行逻辑推理,WHERE中必须包含id*100表达式,并且*是immutable操作符,所以1*100可以替换为常数。从而进行逻辑推理。 postgres=# explain select * from tt3 where id=1 and id*100=1*100; QUERY PLAN ------------------------------------------ Result (cost=0.00..0.01 rows=1 width=0) One-Time Filter: false (2 rows) 约束为 id+10 between 1000 and 10000,between and 自动转换为>=和and <=。并且WHERE中必须包含id+10表达式,同时>=或<=是B-tree-indexable operators。 postgres=# create table tt4( id int check(id+10 between 1000 and 10000)); CREATE TABLE postgres=# explain select * from tt4 where id=1; QUERY PLAN ----------------------------------------------------- Seq Scan on tt4 (cost=0.00..41.88 rows=13 width=4) Filter: (id = 1) (2 rows) postgres=# explain select * from tt4 where id=1 and id+10=1+10; -- +是immutable操作符1+10将转换为11常数。 QUERY PLAN ------------------------------------------ Result (cost=0.00..0.01 rows=1 width=0) One-Time Filter: false (2 rows) 约束为 check id between 1000 and 10000 postgres=# create table tt5( id int check(id between 1000 and 10000)); CREATE TABLE postgres=# explain select * from tt5 where id=1; QUERY PLAN ------------------------------------------ Result (cost=0.00..0.01 rows=1 width=0) One-Time Filter: false (2 rows) postgres=# explain select * from tt5 where id+1=1; QUERY PLAN ----------------------------------------------------- Seq Scan on tt5 (cost=0.00..48.25 rows=13 width=4) Filter: ((id + 1) = 1) (2 rows) postgres=# explain select * from tt5 where 1=id; QUERY PLAN ------------------------------------------ Result (cost=0.00..0.01 rows=1 width=0) One-Time Filter: false (2 rows) postgres=# explain select * from tt5 where 1>id; QUERY PLAN ------------------------------------------ Result (cost=0.00..0.01 rows=1 width=0) One-Time Filter: false (2 rows) postgres=# explain select * from tt5 where 1<id; QUERY PLAN ------------------------------------------------------ Seq Scan on tt5 (cost=0.00..41.88 rows=850 width=4) Filter: (1 < id) (2 rows) PostgreSQL数据库是如何实现这些逻辑推理的呢? 上面的例子,都转换成了?1 op ?2,其中 ?1 是一个表达式或字段,?2是一个常数。 但是,数据库是怎么通过一个条件的真伪判断另一个条件的真伪呢? 还是回到一个例子: check id > 100 推理 id > 1 是真是假?可以通过比较两个常数来决定,100 >= 1 为真则说明 id>1为真。 为什么要比较这两个常数呢?因为这是优化器排除对表的扫描的一种手段,这时还没有到需要用到id值的阶段。所以此时优化器只能通过常数来推理。 具体的代码如下: 目前PG只实现了对btree索引可以用到的操作符的逻辑推理,使用了两张映射表来描述推理关系。 一张表BT_implic_table 用来推理一定为真,另一张表BT_refute_table 用来推理一定为假。 例如: 已知 ATTR given_op CONST1 为真 如果 CONST2 test_op CONST1 为真 则推理得出 ATTR target_op CONST2 一定为真 其中 test_op = BT_implic_table[given_op-1][target_op-1] 就是通过BT_implic_table 映射表取出的操作符。 已知 ATTR given_op CONST1 为真 如果 CONST2 test_op CONST1 为假 则推理得出 ATTR target_op CONST2 一定为假 其中 test_op = BT_refute_table[given_op-1][target_op-1] 就是通过BT_refute_table 映射表取出的操作符。 代码: /* * Define an "operator implication table" for btree operators ("strategies"), * and a similar table for refutation. * * The strategy numbers defined by btree indexes (see access/skey.h) are: * (1) < (2) <= (3) = (4) >= (5) > * and in addition we use (6) to represent <>. <> is not a btree-indexable * operator, but we assume here that if an equality operator of a btree * opfamily has a negator operator, the negator behaves as <> for the opfamily. * (This convention is also known to get_op_btree_interpretation().) * * The interpretation of: * * test_op = BT_implic_table[given_op-1][target_op-1] * * where test_op, given_op and target_op are strategy numbers (from 1 to 6) * of btree operators, is as follows: * * If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you * want to determine whether "ATTR target_op CONST2" must also be true, then * you can use "CONST2 test_op CONST1" as a test. If this test returns true, * then the target expression must be true; if the test returns false, then * the target expression may be false. * * For example, if clause is "Quantity > 10" and pred is "Quantity > 5" * then we test "5 <= 10" which evals to true, so clause implies pred. * * Similarly, the interpretation of a BT_refute_table entry is: * * If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you * want to determine whether "ATTR target_op CONST2" must be false, then * you can use "CONST2 test_op CONST1" as a test. If this test returns true, * then the target expression must be false; if the test returns false, then * the target expression may be true. * * For example, if clause is "Quantity > 10" and pred is "Quantity < 5" * then we test "5 <= 10" which evals to true, so clause refutes pred. * * An entry where test_op == 0 means the implication cannot be determined. */ #define BTLT BTLessStrategyNumber #define BTLE BTLessEqualStrategyNumber #define BTEQ BTEqualStrategyNumber #define BTGE BTGreaterEqualStrategyNumber #define BTGT BTGreaterStrategyNumber #define BTNE ROWCOMPARE_NE static const StrategyNumber BT_implic_table[6][6] = { /* * The target operator: * * LT LE EQ GE GT NE */ {BTGE, BTGE, 0, 0, 0, BTGE}, /* LT */ {BTGT, BTGE, 0, 0, 0, BTGT}, /* LE */ {BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */ {0, 0, 0, BTLE, BTLT, BTLT}, /* GE */ {0, 0, 0, BTLE, BTLE, BTLE}, /* GT */ {0, 0, 0, 0, 0, BTEQ} /* NE */ }; static const StrategyNumber BT_refute_table[6][6] = { /* * The target operator: * * LT LE EQ GE GT NE */ {0, 0, BTGE, BTGE, BTGE, 0}, /* LT */ {0, 0, BTGT, BTGT, BTGE, 0}, /* LE */ {BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ}, /* EQ */ {BTLE, BTLT, BTLT, 0, 0, 0}, /* GE */ {BTLE, BTLE, BTLE, 0, 0, 0}, /* GT */ {0, 0, BTEQ, 0, 0, 0} /* NE */ }; 这两个表里面的0,表示无法推断真或假的情况。例如通过 a>100 无法推断 a>? 一定为假, 只能推断 a>? 一定为真。通过100, ?, 以及 test_op 来推断,而test_op就是从BT_implic_table表中取出的BTLE即<=,因此判断的依据是 ? <= 100 为真则a>? 一定为真。 PostgreSQL通过get_btree_test_op 获得test_op,代码如下: get_btree_test_op /* * Look up the "test" strategy number in the implication table */ if (refute_it) test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1]; else test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1]; if (test_strategy == 0) { /* Can't determine implication using this interpretation */ continue; } /* * See if opfamily has an operator for the test strategy and the * datatypes. */ if (test_strategy == BTNE) { test_op = get_opfamily_member(opfamily_id, pred_op_info->oprighttype, clause_op_info->oprighttype, BTEqualStrategyNumber); if (OidIsValid(test_op)) test_op = get_negator(test_op); } else { test_op = get_opfamily_member(opfamily_id, pred_op_info->oprighttype, clause_op_info->oprighttype, test_strategy); } if (!OidIsValid(test_op)) continue; ... return test_op; 那么PostgreSQL可以利用这些逻辑推理来做什么呢? 通过推断 "一定为假" 来排除哪些表不需要参与到执行计划。直接排除掉。 通过推断 “一定对真” ,可以用在建立执行计划的过程中。 以一定为假为例,我们看看PostgreSQL优化器如何排除哪些表是不需要参与执行计划的。constraint_exclusion参数控制的逻辑推理应用,可以看到调用栈如下: relation_excluded_by_constraints 返回 true 表示不需要扫描这个表,返回 false 表示需要扫描这个表。 简单分析一下这个函数的代码: 未开启constraint_exclusion时,不进行逻辑推理。 /* Skip the test if constraint exclusion is disabled for the rel */ if (constraint_exclusion == CONSTRAINT_EXCLUSION_OFF || (constraint_exclusion == CONSTRAINT_EXCLUSION_PARTITION && !(rel->reloptkind == RELOPT_OTHER_MEMBER_REL || (root->hasInheritedTarget && rel->reloptkind == RELOPT_BASEREL && rel->relid == root->parse->resultRelation)))) return false; 在检查表自身的约束和SQL提供的where条件前,先检查where 条件是否有自相矛盾的。例如: id <> mod(4,3) and id = mod(4,3) postgres=# \d+ tt11 Table "public.tt11" Column | Type | Modifiers | Storage | Stats target | Description --------+---------+-----------+---------+--------------+------------- id | integer | | plain | | postgres=# explain (analyze,verbose) select * from tt11 where id<>mod(4,3) and id=mod(4,3); QUERY PLAN ------------------------------------------------------------------------------------ Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.001 rows=0 loops=1) Output: id One-Time Filter: false Planning time: 0.051 ms Execution time: 0.012 ms (5 rows) 代码如下 /* * Check for self-contradictory restriction clauses. We dare not make * deductions with non-immutable functions, but any immutable clauses that * are self-contradictory allow us to conclude the scan is unnecessary. * * Note: strip off RestrictInfo because predicate_refuted_by() isn't * expecting to see any in its predicate argument. */ safe_restrictions = NIL; foreach(lc, rel->baserestrictinfo) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); if (!contain_mutable_functions((Node *) rinfo->clause)) safe_restrictions = lappend(safe_restrictions, rinfo->clause); } if (predicate_refuted_by(safe_restrictions, safe_restrictions)) return true; // 从SQL涉及的表,以及继承表中获取约束 /* Only plain relations have constraints */ if (rte->rtekind != RTE_RELATION || rte->inh) return false; /* * OK to fetch the constraint expressions. Include "col IS NOT NULL" * expressions for attnotnull columns, in case we can refute those. */ constraint_pred = get_relation_constraints(root, rte->relid, rel, true); /* * We do not currently enforce that CHECK constraints contain only * immutable functions, so it's necessary to check here. We daren't draw * conclusions from plan-time evaluation of non-immutable functions. Since * they're ANDed, we can just ignore any mutable constraints in the list, * and reason about the rest. */ safe_constraints = NIL; foreach(lc, constraint_pred) { Node *pred = (Node *) lfirst(lc); // 包含非immutable函数的表达式不加入推理判断,因为非immutable函数存在变数,不能转常量 if (!contain_mutable_functions(pred)) safe_constraints = lappend(safe_constraints, pred); } /* * The constraints are effectively ANDed together, so we can just try to * refute the entire collection at once. This may allow us to make proofs * that would fail if we took them individually. * * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem * an obvious optimization. Some of the clauses might be OR clauses that * have volatile and nonvolatile subclauses, and it's OK to make * deductions with the nonvolatile parts. */ // 检测是否一定为假,如果一定为假,则不需要扫描这个表。 if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo)) return true; 调用栈如下: predicate_refuted_by predicate_refuted_by_recurse predicate_refuted_by_simple_clause return btree_predicate_proof(predicate, clause, true) btree_predicate_proof@src/backend/optimizer/util/predtest.c /* * Lookup the comparison operator using the system catalogs and the * operator implication tables. */ test_op = get_btree_test_op(pred_op, clause_op, refute_it); 目前PostgreSQL仅仅支持有限操作符的逻辑推理,这些操作符必须是btree-indexable operator postgres=# select oprname,oprcode from pg_operator where oid in (select amopopr from pg_amop where amopmethod=(select oid from pg_am where amname='btree')); oprname | oprcode ---------+-------------------------- = | int48eq < | int48lt > | int48gt <= | int48le >= | int48ge < | boollt > | boolgt = | booleq <= | boolle >= | boolge = | chareq = | nameeq = | int2eq < | int2lt = | int4eq < | int4lt = | texteq = | tideq < | tidlt > | tidgt <= | tidle >= | tidge = | int8eq < | int8lt > | int8gt <= | int8le >= | int8ge = | int84eq < | int84lt > | int84gt <= | int84le >= | int84ge > | int2gt > | int4gt <= | int2le <= | int4le >= | int2ge >= | int4ge = | int24eq = | int42eq < | int24lt < | int42lt > | int24gt > | int42gt <= | int24le <= | int42le >= | int24ge >= | int42ge = | abstimeeq < | abstimelt > | abstimegt <= | abstimele >= | abstimege = | reltimeeq < | reltimelt > | reltimegt <= | reltimele >= | reltimege = | oideq < | oidlt > | oidgt <= | oidle >= | oidge < | oidvectorlt > | oidvectorgt <= | oidvectorle >= | oidvectorge = | oidvectoreq = | float4eq < | float4lt > | float4gt <= | float4le >= | float4ge < | charlt <= | charle > | chargt >= | charge < | namelt <= | namele > | namegt >= | namege < | text_lt <= | text_le > | text_gt >= | text_ge = | float8eq < | float8lt <= | float8le > | float8gt >= | float8ge = | tintervaleq < | tintervallt > | tintervalgt <= | tintervalle >= | tintervalge = | cash_eq < | cash_lt > | cash_gt <= | cash_le >= | cash_ge = | bpchareq < | bpcharlt <= | bpcharle > | bpchargt >= | bpcharge = | array_eq < | array_lt > | array_gt <= | array_le >= | array_ge = | date_eq < | date_lt <= | date_le > | date_gt >= | date_ge = | time_eq < | time_lt <= | time_le > | time_gt >= | time_ge = | timetz_eq < | timetz_lt <= | timetz_le > | timetz_gt >= | timetz_ge = | float48eq < | float48lt > | float48gt <= | float48le >= | float48ge = | float84eq < | float84lt > | float84gt <= | float84le >= | float84ge = | timestamptz_eq < | timestamptz_lt <= | timestamptz_le > | timestamptz_gt >= | timestamptz_ge = | interval_eq < | interval_lt <= | interval_le > | interval_gt >= | interval_ge = | macaddr_eq < | macaddr_lt <= | macaddr_le > | macaddr_gt >= | macaddr_ge = | network_eq < | network_lt <= | network_le > | network_gt >= | network_ge = | numeric_eq < | numeric_lt <= | numeric_le > | numeric_gt >= | numeric_ge = | biteq < | bitlt > | bitgt <= | bitle >= | bitge = | varbiteq < | varbitlt > | varbitgt <= | varbitle >= | varbitge = | int28eq < | int28lt > | int28gt <= | int28le >= | int28ge = | int82eq < | int82lt > | int82gt <= | int82le >= | int82ge = | byteaeq < | bytealt <= | byteale > | byteagt >= | byteage = | timestamp_eq < | timestamp_lt <= | timestamp_le > | timestamp_gt >= | timestamp_ge ~<~ | text_pattern_lt ~<=~ | text_pattern_le ~>=~ | text_pattern_ge ~>~ | text_pattern_gt ~<~ | bpchar_pattern_lt ~<=~ | bpchar_pattern_le ~>=~ | bpchar_pattern_ge ~>~ | bpchar_pattern_gt < | date_lt_timestamp <= | date_le_timestamp = | date_eq_timestamp >= | date_ge_timestamp > | date_gt_timestamp < | date_lt_timestamptz <= | date_le_timestamptz = | date_eq_timestamptz >= | date_ge_timestamptz > | date_gt_timestamptz < | timestamp_lt_date <= | timestamp_le_date = | timestamp_eq_date >= | timestamp_ge_date > | timestamp_gt_date < | timestamptz_lt_date <= | timestamptz_le_date = | timestamptz_eq_date >= | timestamptz_ge_date > | timestamptz_gt_date < | timestamp_lt_timestamptz <= | timestamp_le_timestamptz = | timestamp_eq_timestamptz >= | timestamp_ge_timestamptz > | timestamp_gt_timestamptz < | timestamptz_lt_timestamp <= | timestamptz_le_timestamp = | timestamptz_eq_timestamp >= | timestamptz_ge_timestamp > | timestamptz_gt_timestamp = | uuid_eq < | uuid_lt > | uuid_gt <= | uuid_le >= | uuid_ge = | pg_lsn_eq < | pg_lsn_lt > | pg_lsn_gt <= | pg_lsn_le >= | pg_lsn_ge = | enum_eq < | enum_lt > | enum_gt <= | enum_le >= | enum_ge < | tsvector_lt <= | tsvector_le = | tsvector_eq >= | tsvector_ge > | tsvector_gt < | tsquery_lt <= | tsquery_le = | tsquery_eq >= | tsquery_ge > | tsquery_gt = | record_eq < | record_lt > | record_gt <= | record_le >= | record_ge *= | record_image_eq *< | record_image_lt *> | record_image_gt *<= | record_image_le *>= | record_image_ge = | range_eq < | range_lt <= | range_le >= | range_ge > | range_gt = | jsonb_eq < | jsonb_lt > | jsonb_gt <= | jsonb_le >= | jsonb_ge (273 rows) 除此以外的操作符,不参与逻辑推理。 例如 我们知道geo严格在坐标10,0的左边,肯定能推理出它不可能在11,0的右边,正常情况下是可以排除对这个表的扫描的。 但是由于<<,>>不是btree operator,所以不参与推理。 postgres=# create table tt13(id int, geo point check(geo << point '(10,0)')); CREATE TABLE postgres=# explain select * from tt13 where geo >> point '(11,0)'; QUERY PLAN -------------------------------------------------------- Seq Scan on tt13 (cost=0.00..31.25 rows=170 width=20) Filter: (geo >> '(11,0)'::point) (2 rows) 这种逻辑推理在分区表的应用中尤为突出,例如:用户规划了一批分区表,按照ID取模分区。 postgres=# create table p(id int, info text); CREATE TABLE postgres=# create table t0(id int check(abs(mod(id,4))=0), info text); CREATE TABLE postgres=# create table t1(id int check(abs(mod(id,4))=1), info text); CREATE TABLE postgres=# create table t2(id int check(abs(mod(id,4))=2), info text); CREATE TABLE postgres=# create table t3(id int check(abs(mod(id,4))=3), info text); CREATE TABLE postgres=# alter table t0 inherit p; ALTER TABLE postgres=# alter table t1 inherit p; ALTER TABLE postgres=# alter table t2 inherit p; ALTER TABLE postgres=# alter table t3 inherit p; ALTER TABLE postgres=# explain select * from p where id=0; -- id=0 和 abs(mod(id,4)) = 0,1,2,3由于操作数不一致,不会进行推理。 QUERY PLAN ---------------------------------------------------------- Append (cost=0.00..103.50 rows=25 width=36) -> Seq Scan on p (cost=0.00..0.00 rows=1 width=36) Filter: (id = 0) -> Seq Scan on t0 (cost=0.00..25.88 rows=6 width=36) Filter: (id = 0) -> Seq Scan on t1 (cost=0.00..25.88 rows=6 width=36) Filter: (id = 0) -> Seq Scan on t2 (cost=0.00..25.88 rows=6 width=36) Filter: (id = 0) -> Seq Scan on t3 (cost=0.00..25.88 rows=6 width=36) Filter: (id = 0) (11 rows) postgres=# explain select * from p where id=0 and abs(mod(id,4)) = abs(mod(0,4)); -- 所以必须带上与约束一致的操作数 QUERY PLAN ---------------------------------------------------------- Append (cost=0.00..35.40 rows=2 width=36) -> Seq Scan on p (cost=0.00..0.00 rows=1 width=36) Filter: ((id = 0) AND (abs(mod(id, 4)) = 0)) -> Seq Scan on t0 (cost=0.00..35.40 rows=1 width=36) Filter: ((id = 0) AND (abs(mod(id, 4)) = 0)) (5 rows) 如果我们使用的是范围分区,就不存在以上的问题。因为约束中的操作数和WHERE子句中的操作数可以做到一致。 从以上的例子可以了解到,PostgreSQL优化器的逻辑推理能力还可以加强。只要能推理出一定为假的,就可以被优化器用于排除表。例如一些几何类型的操作符,数组类型的操作符等等。 (责任编辑:好模板) |